LIST OF SYMBOLS

En	= modulus of elasticity of component n, psi
k _n	= wall ratio of component n, $k_n \equiv r_n/r_{n-1}$
K	= overall wall ratio of container, K \equiv r _N /r _o
K'	= wall ratio of inner part of ring-fluid-segment container, $K' = r_3/r_0$
Ν	= the total number of components in a container; N also denotes the outermost component
n	= a specific component when numbered from inside out; i.e., n = 1, 2,, N
р	= bore pressure, psi
P3	= fluid support pressure for the ring-fluid-segment container, psi
rn	= outside radius of component n, inches
r _{n-l}	= inside radius of component n, inches
ro	= bore radius of container, inches
r_{N}	= outer radius of container, inches
S	= shear stress, psi
Sr	= semirange in shear stress for a cycle of bore pressure, psi
Sm	= mean shear stress for a cycle of bore pressure, psi
Smin	= minimum shear stress during a cycle of bore pressure, psi
S _{max}	= maximum shear stress during a cycle of bore pressure, psi
σ	= design tensile stress of ductile steel, psi ($\sigma \leq$ ultimate tensile strength)
σ_1	= design tensile stress of high-strength steel, psi ($\sigma_1 \leq$ ultimate tensile strength)
() _r	= semirange in tensile stress for a cycle of bore pressure, psi
(ơ) _m	= mean tensile stress for a cycle of bore pressure, psi
(0) _{min}	= minimum tensile stress during a cycle of bore pressure, psi
(o) _{max}	= maximum tensile stress during a cycle of bore pressure, psi
α_r	= semirange stress parameter for high-strength steel, $\alpha_r \equiv (\sigma)_r / \sigma_l$
αm	= mean stress parameter for a high-strength steel, $\alpha_m \equiv (\sigma)_m / \sigma_1$
σ _r	= radial stress, psi
σ_{θ}	= circumferential (hoop) stress, psi
$\sigma_{\mathbf{z}}$	= axial (longitudinal) stress, psi
\triangle_n	= interference required between cylinder, n, and cylinder, n + 1, inches
\triangle_{12}	= interference required between the liner, segments, and cylinder, 3, of the ring- segment and ring-fluid-segment containers, inches